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Abstract

We propose a new distributed method for coverage of a moving deformable
convex region with a team of robots in a communication network. Robots
execute a distributed self-deployment strategy based on Centroidal Voronoi
Tesselations (CVT) to cover the region evenly while preventing collisions.
The main contribution is the addition of a feedforward action to overcome
the well-known slow convergence issue of the basic CVT algorithms. This
action is derived by each robot from the information about the region that
floods through the network from a few selected leaders. The method allows
to quickly adapt to the fastly changing working area in spite of the light com-
munication requirements, and it is well suited for large teams of expendable
robots.
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1. INTRODUCTION

We are interested in the following general problem: A dynamic wide area
Ω(t) ⊂ R

2, possibly complex, with obstacles and narrowings, must be ex-
plored or monitored by a large team of robots, which can cover only a very
small fraction each, and which are required to stay together in a sort of flex-
ible formation. To do so, a region Q(t), much smaller than Ω(t), which can
be covered appropriately by the available team of robots, is moved and de-
formed, or manoeuvred, to rake the full area, so that

⋃
t Ω(t) ⊂

⋃
t Q(t). It

is assumed that Q(t) is appropriately covered when the robots are deployed
evenly within the region Q(t), more precisely when they form a Centroidal
Voronoi Tesselation (CVT). The mission of the robots is to do so while Q(t)
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is being moved and deformed in a way non controlled by them, but decided at
a higher level. The current information about the dynamic region is known
by, or communicated to, a few robots in the team, acting as leaders, and it is
flooded from them to the rest of the team, where it arrives delayed some num-
ber of hops, because communication is only possible with whichever robots
are near enough. Using only this information, and the position of its neigh-
bors, each robot must move in a fully distributed and autonomous fashion to
fulfill the mission. Applications can be found in a variety of scenarios, where
the wide area might be a large building, a city, a mountain range, a network
of cave galleries, a river, or a sea, and the task of each robot might be measur-
ing magnitudes, the temporal and spatial variations of which are of interest,
taking images to be processed in search of lost people, accident remains or
hazardous events, or to collaboratively perform actions over the area. For
instance, several valleys and canyons must be explored by a team of aerial
robots that fly low, adapting to the steep rocks and cliffs, commanded from
a rescue helicopter, in order to help find lost people promptly; Or a team of
marine robots is devoted to absorb a large moving patch of oil spilled from a
crashed trunker, before it reaches the seaside, adapting to the evolving patch,
reefs and coastline shapes. In the taxonomy proposed by Robin and Lacroix
(2016) we are interested both in mobile search and monitoring problems,
with similar applications as those that motivate, e.g. (Cortés et al., 2004;
Belta and Kumar, 2004; Svennebring and Koenig, 2004; Wagner et al., 2008;
Hou et al., 2009; Yoshida et al., 2014; Kolling et al., 2016), and references
therein. The problem can be extended, and approached similarly, to the 3-D
case, to explore large volumes, but in this paper the 2-D case is considered
alone for simplicity.

We propose the dynamic region Q(t) to be a convex polygon, and to cover
it evenly via Centroidal Voronoi Tesselations (CVT). Due to their salient
features, the application of CVT to this kind of coverage control is proposed
by many authors (Du et al., 1999; Cao and Hadjicostis, 2003; Cortés et al.,
2004; Liu et al., 2009; Schwager et al., 2009; Sun et al., 2011; Song et al., 2014;
Hateley et al., 2015; Lee et al., 2015; Li and Liu, 2017), but to the best of our
knowledge it has just started to be applied to moving regions by Tardos et al.
(2018), because it faces the problem of slow convergence of CVT algorithms,
making the allowable movement too slow, or risking instability. Despite
being so used, Lloyd’s method is complicated to analyze, and most of the
results on convergence speed are experimental, or refer to the 1-D case (Du
et al., 1999). In order to accelerate convergence, variational (Liu et al., 2009;
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Song et al., 2014; Hateley et al., 2015) or hierarchical (Wang et al., 2016)
approaches have been proposed, but they require more global information,
and a greater communication plus computation effort, to make a difference.
Instead, we propose using the already available local information about the
region’s movement to add a feedforward action. Of course, this feedforward
action might also be added to any version of the CVT algorithm, but we use
the distributed version of Lloyd’s method (Cao and Hadjicostis, 2003; Cortés
et al., 2004) as a baseline to analize the improvements of our proposal.

For simplicity, we assume that robots have been initially deployed within
a static region, which can be achieved by rendezvous techniques to bring
robots inside the region, and/or static CVT coverage methods to distribute
them. Therefore, when the movement starts, it is assumed that the robots
are deployed within the region so that the communication network is con-
nected. The paper by Song et al. (2014) gives nice examples. The successive
positions of the corners/vertices of the moving convex polygon are requested
by the operator, or by intelligent or teleoperated leaders. There are many
options, e.g., leaders might be at the corners, or the region could be defined
around a central, overhead or ground leader, or leaders, etc. Anyway, we
assume that the current position of each corner/vertex is known by one or
more robots, considered “the leaders”. In order to compute its next target
position, each robot uses information received from a relatively small sub-
set of neighbors. This information consists of: (1) the current position of
the neighbors (this might alternatively be measured, e.g., via vision, radar,
laser, etc.); and (2) recent positions of the corners/vertices of the region,
continuously flooded through the network, e.g., via wireless communications
originated at the leaders. For simplicity, information is assumed to be cor-
rect at the point of origin, and communications between neighbor robots,
within a communication radius r, are assumed to be perfect, i.e., instanta-
neous and without errors. Therefore information delays are caused by the
flooding mechanism alone, due to the number of hops from the leaders. It is
also assumed that the robots’ movements required to track the dynamic re-
gion are attainable, meaning that robots are able to reach their next targets,
by means of any suitable lower level local control, during the interval of the
(high level) control step.

Our work is an example of swarm control through leaders, in the terminol-
ogy of Kolling et al. (2016), which opens up the forms of control available for
single and multi-robot systems, and teleoperation. By swarm we understand
a large group of expendable autonomous robots that use only information
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from their neighbors. Part of this information refers to the working area, be-
cause a determined behavior of the team respective to this area is required:
it must be completely and evenly covered. This cannot be achieved by swarm
control approaches without any reference to global information, such as those
by Pendleton and Goodrich (2013); Walker et al. (2013), or when a different
kind of global information is used to describe the region, such as summary
statistics (Freeman et al., 2006) or abstractions (Belta and Kumar, 2004), or
when attention is not paid to the features of the distribution within the work-
ing area (Cheah et al., 2008; Hou et al., 2009). In Svennebring and Koenig
(2004) and Wagner et al. (2008) many (ant) robots, without leaders, cover
a wide area without paying attention to their distribution: they operate al-
most independently, using trails as a means of communication of the mission
(status). They need not being directed by any leader, or stay together in
any kind of formation, which is required in our case. On the other hand,
compared to methods where the geometry of the formation is determined in
order to cover a given region, even when some flexibility is allowed to cover a
dynamic region as in Yoshida et al. (2014), in our proposal each robot decides
its movement autonomously, after the information received from its current
neighbors, irrespective of their identity.

The main contribution of the paper is the introduction of a feedforward
action to make CVT techniques applicable to dynamic regions, without re-
quiring additional information. To the best of our knowledge, there is no
other method where a swarm covers a dynamic (convex) region evenly and
accurately, in an autonomous and fully distributed fashion. Section 2 recalls
the basic CVT concepts and algorithms. The feedforward action is intro-
duced in Sec. 3, where its benefits are proven. Performance of the method
and scalation are evaluated in Sec. 4 through a simulation example.

2. PROBLEM STATEMENT AND CVT COMPUTATION

Let us begin with a brief description of the coverage problem, and the
basic solution strategy based on CVT computation by the Lloyd’s method,
which, at each step, computes Voronoi cells for current robot positions, and
robots are moved towards the centroid of their respective cells. Consider n
robots operating in a planar convex region Q ⊂ R

2, with positions pi ∈ Q,
for i = 1, . . . , n. Each robot can obtain information about the positions
of its current neighbors, within its communication radius r, and viceversa,
i.e., the communication graph is undirected and time-varying. Robots sense
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with better quality the area nearby, so they should be evenly deployed over
the area for a good coverage. More precisely, the goal is to partition Q into
n disjoint regions W = (W1, . . . ,Wn), and to place the robots in positions
P = (p1, . . . , pn) at the centroids of these regions, such that they form a
CVT.

Definition 2.1. Let | · | denote the Euclidean norm in R
2. Given a set of n

robots within a convex region Q ⊂ R
2:

1. A configuration for Q, denoted by (W,P ), is any partition of Q into
n disjoint regions W = (W1, . . . ,Wn) with n robots in positions P =
(p1, . . . , pn) within those regions.

2. A Voronoi Tesselation is a configuration such that for each i:

Wi = {q ∈ Q | |q − pi| < |q − pj|, ∀j �= i}.

3. A Centroidal Voronoi Tesselation (CVT) is a configuration such that it
is a Voronoi Tesselation with each pi at the centroid of Wi, see e.g. Du
et al. (1999).

4. The distance between two configurations, (W,P ) and (W ′, P ′), will be
measured by the maximum distance between the closest robots, and
(abusing notation) it is denoted by

|P − P ′| = max{|pi − p′i| ∀i, assuming |pi − p′i| < |pi − p′j| ∀j �= i}.

Although neither communication nor control actions over robots need to
be synchronized, consider for simplicity that they take place at discrete steps
of duration T , hence, for convenience, time can be measured in steps.

Assumption 2.2. Assume that the dimensions of the problem, Q and n, are
such that r is large enough to reach the Voronoi neighbors, hence keeping the
network connected, at least when the configuration is near a CVT, which is
assumed to be the mission for the swarm. In such case, the number of robots
required to cover Q is in the order of A/r2, with A the area, or (L/r)2, with
L a characteristic length, when it resembles a regular polygon or circle. For
the flooding mechanism, to communicate the region position from the leaders
to all robots, it is assumed that at most h hops are required. Naturally h < n,
and in fact it is in the order of L/r, i.e., in the order of

√
n.
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If transient disconnections, or communication failures, were admitted,
then a larger h might be required, to accommodate the maximum number
of delays/steps in the reception of the position of the vertices, instead of the
maximum number of hops.

The following algorithm, a distributed version of the Lloyd’s descent al-
gorithm (Cao and Hadjicostis, 2003), reaches a CVT starting from a given
initial configuration, even when the communication radius r is transiently not
sufficient to reach the Voronoi neighbors (Song et al., 2014). At each step k,
the Voronoi Tesselation corresponding to the current positions of the robots,
P (k), is computed, and their next positions, P (k + 1), are the centroids of
the Voronoi regions:

Algorithm 2.3. Starting at a configuration (W,P ) = (W (0), P (0)), at each
iteration k, each robot i:

1. Receives the position pj(k) of its neighbor robots, up to distance r, and
updates the position of the vertices of the dynamic region with whichever
more recent information that its neighbors have. When complete infor-
mation about Q is available, robot i can start moving.

2. Computes its region Wi(k) as the intersection between: (a) the bound-
aries of Q; (b) a circle, or approximate polygon, with center pi(k) and
radius r/2; and (c) its Voronoi region Vi based on the (known) positions
of the robots up to distance r,

Vi = {q ∈ Q | |q−pi(k)| ≤ |q−pj(k)|, ∀j such that |pi(k)−pj(k)| ≤ r},
which is a relatively straightforward geometric problem, see e.g. (Cao
and Hadjicostis, 2003). The Voronoi region can be shrunk to pre-
vent collisions between large robots moving within neighbor cells, see
e.g. (Kantaros and Zavlanos, 2016).

3. Computes the mass (area) and centroid of Wi(k):

MWi
(k) =

∫
Wi(k)

dq, CWi
(k) = MWi

(k)−1

∫
Wi(k)

qdq,

with closed expressions after the position of vertices, see e.g. (Cortés
et al., 2004), and

4. Moves to this centroid: pi(k + 1) = CWi
(k). (For instance, with in-

tegrator dynamics, pi(k + 1) = pi(k) + ui(k), the control law might be
proportional, ui(k) = K(CWi

(k)− pi(k)), with gain K = 1 .)
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This would be repeated until the distance to a CVT is as small as desired,
but, since the CVT is unknown, it is repeated until a stop condition, usually
in terms of the number of iterations, or in terms of the distance between
consecutive configurations, |P (k + 1)− P (k)|.
Definition 2.4. Given a configuration (W,P ), the number of iterations of
Alg. 2.3 to reach any CVT, (W̄ , P̄ ), within an arbitrary distance ε, is denoted
by S(P, ε). When P are almost at the centroids of W , no iterations are
required: S(P, ε) = 0 iff |P − P̄ | ≤ ε, with (W̄ , P̄ ) a CVT. When irrelevant,
ε is omitted.

Lloyd’s iterations drive the robots closer to the CVT, step by step:

Lemma 2.5. Consider two configurations, (W,P ) and (W ′, P ′), near a CVT,
(W̄ , P̄ ). S(P ) ≤ S(P ′) iff |pi−p̄i| ≤ |p′i−p̄i| for every i, and, when for some i
|pi−p̄i| < |p′i−p̄i|, then there is a small enough ε such that S(P, ε) < S(P ′, ε).

Proof. It follows from the fact that (W̄ , P̄ ) is a fixed point in Alg. 2.3, see Du
et al. (1999, Sec. 5.3), or Cortés et al. (2004, App. I). This algorithm can be
interpreted as the minimization of a descent function

∫
Q
min{|q − pi| ∀i}dq,

which can be interpreted as an energy function: It is minimized when the pi
are at the centroids of their Voronoi cells.

In addition to the even spatial distribution of autonomous robots, several
features of this coverage method are particularly interesting in our context:

• It is fully distributed. All computations are concurrently performed by
the robots, and they are quite efficient. The computational cost per
robot and iteration is linear with the number of robots placed within
a distance r. Each robot requires very little information, merely the
position of the nearby robots, which in the long run should include its
Voronoi neighbors, and the position of the boundaries of Q.

• It inherently prevents collision problems, particulary when a safety ra-
dius around robots is used to shrink the regions, as in (Kantaros and
Zavlanos, 2016), and robot trajectories are within their respective re-
gions.

• Robot identity is unimportant, making the method resilient against the
withdrawal of failed robots, i.e., a few robots are expendable.
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• A density function ρ(q) might be defined to weight the relative impor-
tance within Q, see (Du et al., 1999; Cortés et al., 2004). We omit
this feature because it prevents the explicit computation of mass and
centroid, requiring instead quadrature computations. Moreover, there
are alternative methods which are better suited to approach the prob-
lem of adaptation to spatially distributed and dynamic, even unknown
beforehand, relevances (Schwager et al., 2009; Sun et al., 2011).

Figure 1 illustrates Voronoi tessellations, and the convergence behaviour
of Alg. 2.3 to reach a CVT. The region is a 2 × 1 rectangle defined by the
4 vertices, depicted in red, within which robots (black), and their Voronoi
cells (cyan, with a safety area) are shown in the scenes. Dashed lines between
robots indicate communication links. The communication radius is r = 0.5 in
this example, which is little more than enough to guarantee communication
to Voronoi neighbors when the configuration is near a CVT, see the bottom-
right frame. In this example, the position of the vertices is only known by
the robots within r, indicated by dashed red lines, and it is flooded through
the communication network. Starting from all the n = 24 robots by the
boundaries of the region, which is a worst case, after 5 steps (top-left frame)
there is only one robot which has complete information about the region, so
it is ready to move to the centroid of its Voronoi cell. After 10 steps (top-
right) every robot is moving, although some Voronoi neighbors are not yet
communicated. After 20 steps (bottom-left) a configuration that is nearly a
CVT has been reached, but the final CVT is still being approached, which is
revealed by the small but positive maximum distance traveled by any robot
in the last step, plotted (scaled by r) in blue below the scenes. After 80
steps (bottom-right) this distance is considered to be (almost) null, so the
configuration of the robots is considered to be (very near to) a CVT.

The application of CVT is very extensive (Du et al., 1999), although
it faces convergence issues that are significant in large problems, in terms
of n, and in dynamic applications. These problems can be circumvented,
particularly in non-distributed applications, with alternative variation-based
algorithms (Liu et al., 2009). They minimize a nonlinear energy function on
all the robots’ positions, taking advantage of knowledge about the Hessian.
While they can be far more efficient than the Lloyd’s method, they require a
greater computational effort, and the usage of information from other robots
besides the Voronoi neighbors. When the Hessian is approximated using less
global information, as in Song et al. (2014); Hateley et al. (2015), the im-
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Figure 1: Configuration of 24 robots within a 2 × 1 rectangular region, after 5, 10, 20,
and 80 iterations of Alg. 2.3, starting from all robots by the boundaries. Communications
are indicated by dashed lines between neighbor robots, within the communication radius
r = 0.5. Cyan lines show the Voronoi cells. Maximum distance traveled by any robot in
the last step (scaled by r) is plotted in blue, below the scene.
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provement is less significant, definitely not enough to allow relatively fast
movements of Q. Another approach to speed-up the algorithms is to use
hierarchical methods, starting from a coarse tessellation, and iteratively in-
cluding more generators, as in Wang et al. (2016), but they also require using
global information, beyond the neighborhood. Instead, we propose using the
local information about Q, which must be known by the robots anyway, to
compute simple but effective feedforward actions.

3. COVERAGE OF A DYNAMIC REGION

Assume now that the region where the robots are required to operate
changes its position, size, and shape. The motivation to such behavior might
be to rake a wide target area, or to track a target that moves and changes
its size and shape. In any case, the movement is imposed to the team, it is
decided at a higher level, and the mission of the robots is to deploy evenly
over the given region. This region is denoted by Q(t), or Qk in discrete-time,
where t = kT . Although the movement can be quite general actually, it is
required that the successive Qk are related by affine transformations (Byer
et al., 2010, Ch. 12) in order to prove some theoretical results.

Definition 3.1. Consider A : R2 → R
2 an affine transformation. (Examples

of affine transformations include translation, scaling, homothety, rotation,
shear mapping, and compositions of them, in any combination and sequence.)

1. The resulting region from applying A to every point in Q, that is, the

region after movement A, is denoted by Q
A−→ A(Q). Alternatively,

A might be regarded also as a transformation from a coordinate system
into a new one, such that the coordinates of point A(p) in the latter
system are the same of those of p in the former, see Fig. 2.

2. For successive movements/transformations, from Q0, Qk = Ak(Qk−1) =
Ak(Ak−1(Qk−2)) = Ak ◦ Ak−1(Qk−2) = · · · = Ak ◦ Ak−1 ◦ · · · ◦ A1(Q0),

the composition Ak ◦ . . . ◦ A1 is denoted by Q0

A1,···k−→ Qk = A1,···k(Q0).

3. A movement is δ-smooth when its changes are small, more precisely
when |(qk+1 − qk) − (qk − qk−1)| < δ, for every qk ∈ Qk and every k.

Notice that, for a given δ, and any given movement Q0

A1,···k−→ Qk, there
exists a time-scaled (slower) movement, where each step is divided into

s smaller steps, Q0

A11,···1s,···k1,···ks−→ Qk such that it is δ-smooth.
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Figure 2: Illustration of the application of an affine transformation A. Notice that the
centroid of Q, which is in (0, 0), is transformed to the point (0, 0) in the transformed
coordinates. It is also illustrated that a CVT for Q (cyan) is transformed to a CVT for
A(Q).

4. Given a configuration (W,P ), the configuration reached after movement
A is denoted by A(W,P ).

Lemma 3.2. Consider Q a convex region, and A : R
2 → R

2 an affine
transformation, or movement:

1. The resulting region, A(Q), is also convex. Let QC be the centroid of
Q. Then, the centroid of A(Q) is A(QC).

2. If (W,P ) is a CVT for Q, then A(W,P ) is a CVT for A(Q), hence
S(A(P )) = 0.

Proof. Convexity and centroid conservation are properties of affine transfor-
mations (Byer et al., 2010, Ch. 12). They imply that Voronoi cells, neighbors,
and centroids are preserved. It follows trivially that S(A(P )) = 0.

Figure 2 illustrates an affine movement A (consisting of translation, ro-
tation, and scalation), and it shows the properties of centroid and CVT
conservation.

On the contrary, in general, although (W,P ) is a CVT for Q, it is not
a CVT for A(Q). Actually the distance |P − A(P )| might be quite large,
when the movement/transformation is noticeable. Let W ′ be the partition
of A(Q) corresponding to P such that (W ′, P ) is a Voronoi Tesselation for
A(Q). In general, it is not a CVT: S(P, ε) might be strictly positive if the
induced displacements are greater than ε. In fact, S(P ) might be quite large
if the displacements are large: notice, for instance, that with a stationary
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movement |(qk+1− qk)− (qk− qk−1)| = 0, while |qk+1− qk| = |qk− qk−1| might
be large. Therefore, due to the slow convergence of Alg. 2.3, it is expected
that its application to a region which moves at each step would require a slow
movement to converge (see the first dynamic case in the video attachment,
where 24 robots are unable to track a slowly moving region).

In control terms, A can be regarded as a perturbation, and Alg. 2.3 re-
sponds to it reactively, which is sufficient only when (the effect of) the pertur-
bation is small, which is not the case for fast movements. To overcome this
problem, we propose the introduction of a feedforward action, taking advan-
tage of the fact that it is possible, and economic, to estimate the perturbation
reasonably well: each robot knows about the region, perhaps with some de-
lays, when the information arrives from distant locations through flooding.
Of course, feedforward does not need to be perfect (which is in general impos-
sible) in order to make a difference, it suffices that it reduces the error, and
therefore it makes the still required job of the feedfback mechanism (CVT
iterations) easier.

After these ideas, the following algorithm is proposed. For the notation,
time (step) is indicated as a subscript, e.g., Qk is the region at time kT ,
and pi,k denotes the position of robot i after k steps. Notice the difference
wrt. the notation in Alg. 2.3, where, for instance, (W (k), P (k)) denoted the
configuration after k Lloyd’s iterations. At each step k, with robots at Pk,
each robot i computes its corresponding Voronoi region, using its estimation
of the current position of the region, Q̂i

k, and computes its next position,
pi,k+1, as the centroid of this Voronoi region, CWi,k

, plus its estimation of the

next movement of this point with the region, Âi
k+1(CWi,k

):

Algorithm 3.3. Starting at a configuration (W0, P0), in a region Q0, which

moves according to successive Qk−1
Ak−→ Qk = Ak(Qk−1), at each iteration k,

each robot i:

1. Receives the position pj,k of its neighbor robots, up to distance r, and
updates the position of the vertices of the dynamic region with whichever
more recent information that its neighbors have. When enough infor-
mation about past positions of the region is available, robot i can start
moving.

2. Updates its estimations of Qk−h+1, . . . Qk, Ak−h+1, . . .Ak,Ak+1 denoted
by Q̂i

k, Âi
k, etc, where h is an upper bound for the number of hops

(Asn. 2.2). The superscript notation stands for “as estimated by robot
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i”: Q̂i
k is the estimation, by robot i at step k, of the dynamic region.

It is based on the updated positions of the vertices, which correspond to
past steps, between k−h and k, depending on the distance from leaders.

3. If the current position of the robot is outside its estimated region, Q̂i
k,

then find a close position at the boundary of the region, and let it be
pi,k.

4. Computes its region Wi,k as the intersection between: (a) the boundaries

of Q̂i
k; (b) a circle, or approximate polygon, with center pi,k and radius

r/2; and (c) its Voronoi region Vi,k based on the (known) positions of
the robots up to distance r,

Vi,k = {q ∈ Q̂i
k | |q − pi,k| ≤ |q − pj,k|, ∀j such that |pi,k − pj,k| ≤ r},

which is a relatively straightforward geometric problem, see e.g. (Cao
and Hadjicostis, 2003). The Voronoi region can be shrunk to pre-
vent collisions between large robots moving within neighbor cells, see
e.g. (Kantaros and Zavlanos, 2016).

5. Computes the mass (area) and centroid of Wi,k:

MWi,k
=

∫
Wi,k

dq, CWi,k
= M−1

Wi,k

∫
Wi,k

qdq,

with closed expressions after the position of vertices, see e.g. (Cortés
et al., 2004), and

6. Moves to this centroid (“feedback action”) plus the next estimated dis-

placement (“feedforward action”): pi,k+1 = CWi,k
+ Âi

k+1(CWi,k
). (For

instance, with integrator dynamics, pi,k+1 = pi,k + ui,k, the control law

might be proportional, ui,k = K(CWi,k
+ Âi

k+1(CWi,k
) − pi,k), with gain

K = 1.)

Remark 3.4. Some considerations about Alg. 3.3 follow:

1. Note that the computational and memory costs associated to the opera-
tions performed by each robot at each iteration of this algorithm are very
light, they are actually linear with the number of robots placed within
a distance r. This is one of the facts that makes distributed strategies
such as this one so appealing.

2. In practice, steps between successive Qk, at the higher level of the
control hierarchy, involving measurements and communication between
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robots, would be much larger than steps between successive positions
of the robots, at the lowest local level of robot motion control. Nev-
ertheless, for simplicity, it is assumed that these steps coincide. It is
understood that during such a step robots are able to reach their next
targets, Pk+1, from their current positions, Pk, by means of a suitable
low level control (most probably, with a quite faster cycle).

3. In step 1 of the algorithm, the position of the vertices is flooded through
the network of robots, from the leaders. Therefore, in step 2, robots
must estimate the current position of the region from a more or less
outdated information of the current position of each vertex, depending
on the number of hops from the leader where the information about such
vertex position originates. These delays can be as small as zero control
steps, if the robot is within the communication radius of the leader, or
they can be quite large, up to h, in the order of L/r steps, when the
leader is most distant. Notice that, from the definition of h in Asn. 2.2,
for sure Qk−h is known by every robot, i.e., Q̂i

k−h = Qk−h. With any

estimation such that Q̂i
k = Âi

k−h+1,···k(Qk−h), where Âi
k−h+1,···k is affine,

e.g., (Âi
k−h)

h, with Âi
k−h affine applied h times, it is guaranteed that

Q̂i
k is convex, because convexity is preserved by affine transformations

(Lemma 3.2.1), and the composition of affine transformations is also
affine (Def. 3.1).

4. There are many options for the estimation of the movement, in step
2. For simplicity, a first order approximation of translation and ro-
tation will be used: translation is computed as the difference between
the centroids of the two latest known positions of the region, and ro-
tation as the difference between the angles of their axis of minimum
inertia, see Fig. 3. Higher order approximations, and/or including fur-
ther available information about size or shape, might of course improve
the estimation.

5. Notice that, given two different robots i and j, the estimations Q̂i
k and

Q̂j
k might well differ from each other, since they might have more or less

outdated information about the vertices of the region. The differences
would be small when i and j are neighbors, because their latest known
positions of the region vertices differ no more than one step/hop, thanks
to the flooding mechanism. Naturally, both of them would, in general,
differ from the current Qk. Nevertheless, in the case, indicated in the
item 2 above, that the common value h (a bound for the maximum
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Figure 3: Estimation of Ak−h as a first order approximation of the translation between
centroids plus rotation (red, dashed) between Qk−h−1 (dark blue) and Qk−h (lighter blue),
assumed to be the last two positions of the region known by robot i. With movements
changing slowly in h steps, it is expected that Q̂i

k = (Âi
k−h)

h(Qk−h) (magenta) approxi-
mates Qk (lightest blue). In the figure, movement changes, particularly size changes, have

been exaggerated, for better readability: Notice that Q̂i
k is the same size as Qk−h, because

Âi
k−h consists of translation and rotation alone, but Qk−h happens to be slightly larger

than Qk−h−1, while Qk is actually quite smaller.
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number of hops, see Asn. 2.2) was used for all the estimations, Q̂i
k =

(Âi
k−h)

h(Qk−h), then Q̂i
k = Q̂j

k, although the difference with the actual
Qk might be larger.

6. It is important to understand that applying Alg. 2.3 to the dynamic
case, with successive Qk instead of a fixed Q, is the particular case of
Alg. 3.3 where for every robot i: Q̂i

k = Qk−h, and Âi
k = 0.

In the sequel it shall be proven that, thanks to the feedforward action
in Alg. 3.3, the movement of the robots stably tracks the movement of the
region when it is δ-smooth, i.e., when it changes slowly enough. Moreover,
collisions are prevented, and the positions of the robots converge to a CVT
when the movement of the region becomes stationary or stops.

In order to grasp the benefit of the feedforward action, consider first the
easy case that robots are able to perfectly estimate the movement. That is,
for each robot i, Q̂i

k = Qk, and Qk+1 = Ak+1(Qk) = Âi
k+1(Q̂

i
k). In such case,

the dynamic algorithm is nothing but a transformed (by Ak) version of the
static one.

Proposition 3.5. Start with a configuration (W0, P0), in a region Q0, which

moves according to successive Qk−1
Ak−→ Qk = Ak(Qk−1): Q0

A1,···k−→ Qk =
A1,···k(Q0). Assume that, at each iteration k, each robot i is aware of Qk,

i.e., Q̂i
k = Qk, and it is able to compute Âi

k+1 = Ak+1. Then Alg. 3.3 reaches
the configuration (Wk, Pk) = A1,···k(W (k), P (k)), where (W (k), P (k)) is the
configuration reached by Alg. 2.3 when applied to a static region Q0 starting
with a configuration (W (0), P (0)) = (W0, P0).

Moreover, if for all i and k the trajectory of robot i from pi,k−1 to pi,k is
contained in the intersection of Wi,k−1 and Wi,k, then no collisions occur.

Proof. Recall thatAk can be regarded as a coordinate transformation (Def. 3.1.2),
preserving CVT’s (Lemma 3.2.2). Therefore, the successive configurations
(Wk, Pk), obtained by Alg. 3.3, in the dynamic case, coincide with those ob-
tained by Alg. 2.3, (W (k), P (k)) in the static case, after the corresponding
coordinate transformation: (Wk, Pk) = A1,···k(W (k), P (k)).

For the absence of collisions, the result follows, as in the static case, from
the fact that the successive Wi(k) are disjoint.

Notice, at step 5 of Alg. 3.3, that it is the feedforward term that makes
the difference, because in the next step, the centroid, CWi,k+1

will be at

16



Ak+1(CWi,k
), hence it is required to add Âi

k+1(CWi,k
) to obtain the centroid

that corresponds (is expected to correspond) to Wi,k+1, rather than Wi,k.
Of course, in general, the assumptions of Prop. 3.5 do not hold, unless,

for instance, the movement consists of a stationary translation plus rotation,
the static case trivially included. In the general case, (Wk, Pk), as computed
by Alg. 3.3, differs from A1,···k(W (k), P (k)). Nevertheless, this difference is
not significant when the movement is δ-smooth (see Def. 3.1):

Theorem 3.6. Start with a configuration (W0, P0), in a region Q0, which

moves according to successive Qk−1
Ak−→ Qk = Ak(Qk−1): Q0

A1,···k−→ Qk =
A1,···k(Q0). If the movement is δ-smooth, with δ small enough, then the
successive configurations (Wk, Pk) reached by Alg. 3.3 are such that S(Pk) =
S(P (k)) = S(A1,···k(P0)), where (W (k), P (k)) is the configuration reached
by Alg. 2.3 when applied to a static region Q0 starting with a configuration
(W (0), P (0)) = (W0, P0).

Moreover, if for all i and k the trajectory of robot i from pi,k−1 to pi,k is
contained in the intersection of Wi,k−1 and Wi,k, then no collisions occur.

Proof. The result trivially holds for k = 0, since (W0, P0) = (W (0), P (0)).
Assume now that it holds up to k, i.e., S(Pk) = S(P (k)) = S(A1,···k(P0)),
and let us prove that it also holds for k + 1.

The goal is to prove that the distance between Pk+1 and P (k + 1) =
Ak+1(P (k)) is small, in the sense that they are both equally distant to a CVT,
in terms of the number of Lloyd’s steps required, see Def. 2.4. Actually, it
must be proven that this distance is very similar to the distance |Pk −P (k)|,
which is small by the induction hypothesis. Considering how they are defined,
or calculated, the differences can be due to:

• errors in the estimation of the current region position, Q̂i
k �= Qk, which

is used to compute the position of the centroids of the current Voronoi
cells, for the ”feedback action”, and/or

• errors in the estimation of the next movement, Âi
k+1 �= Ak+1, which is

used to anticipate the next displacement, for the “feedforward action”.

Therefore, the goal is to prove that these errors are both as small as required,
when δ is small enough.

Regarding the estimation of the region position, Q̂i
k, notice that its dif-

ference with Qk is only relevant in the case of robots (Voronoi cells) ad-
jacent to the boundary of the region, where this estimation is effectively
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used in step 4.(a) of Alg. 3.3. In the worst case, if at most h > 0 hops
are required to propagate any information about the region, one could take
Q̂i

k = Âi
k−h+1,···k(Qk−h), hence the error in the estimation of the region posi-

tion is due to the error in the estimation of the last h steps of the movement,
because Qk = Ak−h+1,···k(Qk−h). For a δ-smooth movement, where changes
in successive Ak are bounded by δ, this estimation error is bounded, because
estimations are based on previous values. Naturally, the actual errors depend
both on the actual derivatives/changes of the movement, the quality of the
estimation, and the maximum number of hops, h, which depends on the size
of the region (and the number of robots), and the distance of a robot from
the leaders. In any case, there would be a difference between the position
of the current centroid of the “true” Voronoi cell of the robot, and its posi-
tion as computed by the algorithm, but this difference would be small in a
δ-smooth movement, as small as required with δ small enough.

Concerning the estimation of Ak+1 by Âi
k+1, which might cause a devia-

tion in the position of the next centroids, notice that the estimation error is
small in a δ-smooth movement, as small as required with δ small enough, be-
cause changes in successive Ak are bounded by δ, and estimations are based
on previous values.

In summary, the differences between (Wk+1, Pk+1) and (W (k + 1), P (k +
1)), which would depend on δ, are small when δ is small. In particular, for a
given ε, an appropriate δ exists such that S(Pk+1, ε) = S(P (k + 1), ε).

For the absence of collisions, in the case that all estimations are derived
from the same information, Q̂i

k = Âi
k−h+1,···k(Qk−h), see Rmk. 3.4.4, then the

successive Wi,k are disjoint, hence so they are the robot trajectories. In the
case when the most recent information is used, it would be required to shrink
the cell by a sufficiently large safety area, to guarantee that adjacent Wi,k

are disjoint. Since the difference in the estimations of two adjacent robots
is small (their informations differ in one hop, at most, see Rmk. 3.4.4), then
this safety area would be in the order of the maximum change in the distance
that the region moves in one step, which should be much smaller than a
characteristic length of the cells Wi,k, that is, much smaller than r.

Notice, again, that it is the feedforward term that makes the difference,
because otherwise, i.e., with a Âi

k = 0 (see Rmk. 3.4.5), the “estimation
error” would be as large as the displacements induced by Ak, max{|qk+1 −
qk|}, which can be very large in spite that the movement is δ-smooth, or even
stationary. This is even worse, some h times worse, for h steps.
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In the particular case that (W0, P0) is already a CVT forQ0, the successive
(Wk, Pk) are CVT’s for the respective Qk, when the movement is δ-smooth:

Corollary 3.7. Start with a CVT configuration (W0, P0), in a region Q0,

which moves according to successive Qk−1
Ak−→ Qk = Ak(Qk−1): Q0

A1,···k−→
Qk = A1,···k(Q0). For a given ε, a δ exists such that, if the movement is
δ-smooth, then every configuration (Wk, Pk) reached by Alg. 3.3 is a CVT of
Qk.

In practice, the movement is not required to be as slow as the proof of
Th. 3.6 appears to require: Even when there are errors in the estimation
of the successive Ak, or they increase transiently, if they do not become
too large, then Alg. 3.3 produces successive (Wk, Pk) which do not get too
far from the corresponding (W (k), P (k)), and when the movement becomes
stationary, or ceases, a CVT is reached after a few Lloyd’s iterations, and it is
kept from then on, as the Fig. 7 later on shows. The proof schema indicates
that, in practice, for a given problem size, particularly for a given maximum
number of hops, h, a movement that changes relatively fast, with significant
changes ocurring in h steps or less, will be difficult to track. All this is better
illustrated in the next section, by means of some simulation cases.

4. PERFORMANCE EVALUATION

In this section the benefits, and also the limits, of the method will be
illustrated by a simulation example. A selected few of these simulation cases
are provided on the video attachment. Essentially, the goal is to demon-
strate that feedforward in Alg. 3.3 allows to track a region that moves fast,
compared to the inability of the conventional CVT algorithm (Alg. 2.3, or

Alg. 3.3 with Q̂i
k = Qk−h, and Âi

k = 0). Time-scalation, or a speed factor, s,
with the interpretation given in Def. 3.1.3, shall be used to make a movement
slower (with the same duration of the steps), or smoother (with shorter time
steps).

It is required to first understand the case, scalation in time and size, and
the performance figures, in order to be able to interpret the plots in Subs. 4.4,
where the results are discussed to illustrate the following facts:

1. The introduction of feedforward allows to track a dynamic region that
moves much faster than what the basic CVT algorithm is able to track,
particularly when the position of the region is immediately known by
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all robots, which is a reasonable assumption in many practical cases
(this information is broadcasted from a leader).

2. Even when the information about the dynamic region reaches the robots
with delays due to flooding from distant leaders, the introduction of
feedforward increases significantly the speed of the region that the
method is able to track.

3. As it should be expected, performance degrades with the size of the
problem, because flooding requires more hops. Nevertheless, feed-
forward allows to track significantly larger regions, with many more
robots.

In summary, feedforward allows to track the same region moving much faster,
a much larger region moving at the same speed, or both: a larger region
moving faster, but not that much, unless the current position of the region
is broadcasted to every robot in the team.

4.1. Case description

In the simulations performed in this section, the initial region is a 2 × 1
rectangle defined by m = 4 vertices, see for instance step 20 in Figure 4,
with vertices numbered inside red circles. At t = 0, after s6 initial steps,
while an initial CVT is still being approached starting from all the robots
at the boundaries, which is a worst case, the region to be covered starts
to change, perturbing the CVT convergence process. First the region just
translates, it starts to rotate s60 steps later, and s60 later it also shrinks
and expands. The velocities (of translation, rotation, or resizing) vary with
time sinusoidally (see attached video). Notice that, for the same size of the
region, the larger the value of s, the slower the movement. Figure 4 shows
the region at several steps, for the case with n = 24 robots and s = 4.

Each robot is aware of the current position of any other robot within
its communication radius, r. Figures 5, 6, and 8 show simulations with
different policies for propagating the positions of the vertices. In Fig. 5 these
positions are broadcasted to all the robots. This prevents the delays due to
flooding, hence it makes the tracking task much easier, while it is a realistic
assumption for many applications. In Figs. 6 and 8, only the robots within
the communication radius of the leaders at the vertices are instantly aware of
their position, while the rest must wait to update their positions by a flooding
propagation. Since correct information is available at the corners, then the
central robots receive it more or less simultaneously from the equally distant
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Figure 4: Five frames during the movement, with n = 24 robots, and speed factor s = 4.
Communications are indicated by black dashed lines between robots, and red dashed lines
lines with leaders. Cyan lines show the Voronoi cells at each step. Observe that in the
first frame (step 20), just before starting the movement, a CVT is not yet reached — it
coincides with the second configuration shown in Fig. 1. In step 670 only 21 robots remain,
and another one is removed before step 740.
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corners, while a robot near a corner has recent information about its position,
but receives the information about the opposite one with the greatest delay,
in some L/r steps: The number of hops is quite large when the region (hence
the number of robots) is large, recall that L/r is in the order of

√
n. The

maximum number of hops effective during each step is shown in the videos,
and the maximum value, h, is recorded, and it is indicated in the legends of
the plots below.

By the end of the experiment, it is simulated that some robots disappear,
one by one, up to some 20% of the team, to illustrate the nice robustness of
the swarm against individual failures. For instance, for the case of n = 24,
several robots are removed, one by one, every s12 steps starting at t = s126.

The basis for the feedforward action is the estimation of the movement
of the dynamic region, derived from the latest two known positions of the
region. First-order approximations of the translation and rotation speeds
are used: They are obtained from the change of the position of the mass
center, and the change of orientation of the axis with minimal inertia, re-
spectively, of m identical point masses placed at the region corners. Notice
that this feedforward action is deliberately simple, to illustrate robustness
against imperfect estimations. For instance, it does not include size changes,
although these transformations/movements occur during the experiments.
As with the use of a greater order estimation of the translation and rotation
speeds, reasonable corrections accounting for size and shape changes could
be introduced, to improve performance.

4.2. Time and length scales, and scalation in n

Time is measured in number of steps, of duration T . In order to make
the movement slower, the number of steps required for the same movement
is multiplied by a speed factor s. To compare performance with different
speeds, the time axis will be scaled with sT . Recall that, in these simulations,
at each step all robots perform one iteration of the algorithm (communica-
tions, Voronoi computations, and movement). The methods are expected to
fail tracking a region that moves too fast (s too small), particularly when
feedforward is not used.

It would be natural to fix r, which is the communication radius, hence
the area would grow with n, and lengths with

√
n. Nevertheless, for graphic

convenience, the area is fixed. Therefore, to investigate scalation, when n
increases by 4, r is reduced to its half: with n = {6, 24, 96, 384} robots,
r = {1, 0.5, 0.25, 0.125}.
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4.3. Performance figures: Displacements and distances

In Figs. 5, 6, and 8, a couple of performance measures are plotted. Time
is always scaled by sT , and distances by r.

The top plot in each figure depicts the maximum (scaled) displacement
of any robot at each step (dashed for the leaders): e/r. The typical condi-
tion to stop iterating static CVT algorithms, where “leaders” don’t move,
is that these displacements are very small, because for a static region these
displacements are the actuating errors. Since the displacement e in one step
of duration T is normalized by r, e/r can also be interpreted as the in-
stantaneous velocity, in communication radius per control period. To give a
physical impression, assuming r = 100 meters, and T = 2 seconds, a velocity
of, say, 0.27 (27% of the communication radius r is traveled in T seconds) is
13.5 m/s, almost 50 km/h.

Naturally, the displacements at each step should be small compared to r
(e/r << 1), because otherwise robots would attempt to move in one step to
the area beyond their communication range. Therefore, reasonable velocities
are bounded by e/r < 1. In the examples below, e/r reaches the maximum
value 0.8 in some case, which is an extreme speed, practically unreasonable.

In these plots, the disappearance of robots is often revealed by narrow
peaks in the (scaled) maximum distance traveled by any robot, e/r, compared
to that of any leader, because when a robot disappears the neighbors must
move to “fill the gap”, and they do so in a few steps. This can be appreciated
in the three figures, but it is particularly apparent in Fig. 6, at t = s126 and
t = s174.

The plot below shows the minimum, mean, and maximum distances be-
tween connected robots. This performance measure has been selected be-
cause its evolutions are very intuitively informative of the behaviour of the
system: Almost constant mean distances with small and constant deviations
indicate that robots are deployed evenly and the configuration is kept. Large
minimums (d/r >> 0) show that collisions are far to occur. The fact that d
is not much smaller than r (notice that d/r is between 0.5 and 1 when the
region is not shrunken) indicates that the density of communications is low,
each robot barely reaches its Voronoi neighbors.

The different experiments (simulations) are identified by colors, and their
main parameters are summarized in the legends: n, r, h, s, and also the
maximum velocity of the region (of some vertex), in communication radius
per control period.
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• n = 24, r = 0.5, h = 0 (leaders broadcast), s = 16, vmax = 0.05,
without feedforward.

• n = 24, r = 0.5, h = 0 (leaders broadcast), s = 1, vmax = 0.8, with
feedforward.
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Figure 5: When the information about the region is broadcasted, hence no hops are re-
quired, performance is highly improved by the proposed method: Compare the case with-
out feedforward and a very slow movement (s = 16, red) to the fast case with feedforward
(s = 1, black). Notice that the movement couldn’t be faster: maximum displacements e
in one control period (of duration T ) are almost as large as r. Top: the normalized max-
imum displacement of any robot at each step (e/r), dashed for the leaders, and bottom:
normalized minimum, mean, and maximum distances between connected robots (d/r), see
Subs. 4.3.

4.4. Discussion on the results

Firstly the necessity of the feedforward action is illustrated with the case
n = 24 with broadcast. Figure 5 shows a relatively successful case with-
out feedforward, that requires a very slow movement (s = 16, red), and
a most fast case with feedforward (s = 1, black). Notice that speed (0.8
communication radius per control step) is extreme in the later case, because
displacements approach r. A larger case with the same speed (n = 96, s = 2)
is included in the video attachment. Observe, in the plot at the bottom of
Fig. 5, that in both cases the distances between robots deviate in a similar
amount, revealing similar difficulties to keep an even deployment.

Fortunately, the method with feedforward is able to perfectly keep the
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• n = 24, r = 0.5, h = 8, s = 16, vmax = 0.05, without feedforward.

• n = 24, r = 0.5, h = 8, s = 3, vmax = 0.27, with feedforward.
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Figure 6: When the information about the region is flooded through the network, and
several hops are required (up to 8 here), performance is still greatly improved by the
proposed method: Compare the case without feedforward and a very slow movement
(s = 16, red) to the fast case with feedforward (s = 3, black). Top: the normalized
maximum displacement of any robot at each step (e/r), dashed for the leaders, and bottom:
normalized minimum, mean, and maximum distances between connected robots (d/r), see
Subs. 4.3.

even deployment with a reasonably fast movement, even without broadcast,
see Fig. 6. Compared to the case without feedforward and a very slow move-
ment (s = 16), depicted in red, feedforward, depicted in black, allows to
track a quite faster movement (s = 3, shown also in the video attachment,
after the case without feedforward and s = 8, which fails).

In order to illustrate the ability of the method to cope with the pertur-
bation that a movement can be interpreted to be, the following experiment
was set, for the case n = 24: Starting from a CVT for the original region,
P (0), the distances between the current configuration, Pk, and the original
CVT transformed by the movement, A(P (0)), which is the “ideal” or “non-
perturbed” CVT in the sense of Prop. 3.5, Th. 3.6, and Cor. 3.7, are plotted
in Fig. 7, for the cases with and without feedforward, and s = 8 (black and
red, respectively). Observe that the case without feedforward is unsuccessful,
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communication with some leader is lost eventually, before t = 100s, while
feedforward succeeds to keep deviations in check, although, in the end, after
the movement suddenly stops at t = 180s, the CVT that is reached is not
A(P (0)): CVT’s are not unique (the energy function is nonlinear, CVT’s
are local minima), so when the original configuration is perturbed beyond
some point, the method might converge to a different CVT, as it happens in
this case. In terms of Cor. 3.7, it is expected that with a slower (smoother)
movement, the original CVT is never lost. This is confirmed in Fig. 7 by the
case s = 16 with feedforward (blue). Actually, with s = 16, the movement is
sufficiently slow so that even the method without feedforward succeeds, al-
though from the beginning the configurations are somehow distant from the
original one, as illustrated bu the relatively high values in the magenta plot.
It must be emphasized that, when feedforward is used, such a slow movement
is not required in practice, as the case n = 24 and s = 8 demonstrates, not
to mention the still faster case s = 3 in Fig. 6.

Finally, we illustrate scalation in the number of robots, hence the size of
the region. The purpose is twofold: On the one hand, it is shown that the
method scales well, and the addition of feedforward allows tracking larger
regions. On the other hand, it illustrates the expected fact that with larger
sizes, requiring larger number of hops in the communication, the allowable
speeds are limited.

Figure 8 shows cases with n = 6, 24, 96, 384 robots, depicted in green,
black, blue, and magenta, respectively. The case n = 24 and s = 16 without
feedforward has been repeated from Fig. 6, depicted in red, for compari-
son. The speed factors are about the maximum ones that allow a successful
tracking in each case. Actually, in all cases a value of s/2 results eventually
in a loss of communication with some of the leaders, so the tracking is not
successful, while the deployment is kept almost perfectly even with a value
of 2s. Concerning instantaneous velocities, recall that they are not only re-
lated to s, but also to the sizes: with four times as many robots to cover a
four times wider area, lengths are double (but r is halved to keep the size
of the region in videos, for graphic convenience). Observe that, compared
to the case without feedforward (red), it is possible to successfully track an
identical region that moves more than five times faster (black), a four times
larger region, with four times more robots, moving four times faster (blue),
or a sixteen times larger region that moves twice faster (magenta)!

Increasing the size it is expected that the performance degrades some-
how, because more hops are required for flooding (up to h = 3, 8, 15, 30,
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• n = 24, r = 0.5, s = 16, vmax = 0.05, with feedforward.

• n = 24, r = 0.5, s = 8, vmax = 0.1, with feedforward.

• n = 24, r = 0.5, s = 16, vmax = 0.05, without feedforward.

• n = 24, r = 0.5, s = 8, vmax = 0.1, without feedforward.
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Figure 7: Feedforward reduces the effect of the perturbation due to the movement of the
region. Starting from a CVT P (0), these plots show the distance between the current
configuration, and A(P (0)), the original CVT transformed by the movement. Following
the ideas in the proof of Th. 3.6, and the statement of Cor. 3.7, it is demonstrated that
the original CVT is preserved using feedforward (blue) when the movement is smooth
enough (s = 16). Naturally, the movement does not need to be so slow, when feedforward
is used, although it might happen that coverage is achieved by a CVT which differs from
the original one (black).
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• n = 24, r = 0.5, h = 8, s = 16, vmax = 0.05, without feedforward.

• n = 384, r = 0.125, h = 30, s = 32, vmax = 0.1, with feedforward.

• n = 96, r = 0.25, h = 15, s = 8, vmax = 0.2, with feedforward.

• n = 24, r = 0.5, h = 8, s = 3, vmax = 0.27, with feedforward.

• n = 6, r = 1, h = 3, s = 1, vmax = 0.4, with feedforward.
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Figure 8: Case n = 6, 24, 96, 384 with feedforward, with s = 1, 3, 8, 32, in green, blue,
black, and magenta, respectively. Case n = 24 without feedforward, with s = 16, in red.
Top: the normalized maximum displacement of any robot at each step (e/r), dashed for
the leaders, and bottom: normalized minimum, mean, and maximum distances between
connected robots (d/r), see Subs. 4.3.

respectively). Notice that the maximum speed had to be limited (up to vmax=
0.4, 0.27, 0.2, 0.1, respectively) and the distances between robots were not
kept so even, with more erratic movements (compare from the green to the
magenta plots).

In order to further illustrate that the speed limitation stems from the
number of hops, three different cases tracking the same dynamic region mov-
ing at the same velocity with 96 robots are shown in Fig. 9. We start with
the case already shown in Fig. 8 (blue), with communication radius r = 0.25,
a value chosen to be just sufficient to reach the neighbors, which is a worst
case in terms of density of robots covering the region. With the size of the
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region, the number of hops h required to communicate the region position
from the leaders is up to h = 15. In the second case shown in Fig. 9 (red) the
communication radius is r = 1, which reduces the maximum number of hops
to h = 2. This would correspond to applications where the sensing/acting
radius of robots was smaller than the communication radius, so the region
needs to be more densely populated than required to keep the network con-
nected, with the side effect that communications are more dense. Finally,
the third case (green) shows the behavior when the region position is imme-
diately broadcasted to every robot from the leaders, so no hops are required.
Notice that with less number of hops, the resulting deployment is more even,
and less erratic robots’ movements are performed (compare from the blue
to the green plots), that is, robots fulfill the mission better and more easily.
Actually, with r = 1 or when the region is directly broadcasted to all the
robots (h = 0) it would be possible to track the same region moving quite
faster than what can be allowed with r = 0.25 (see the video attachment).

5. CONCLUSION AND FUTURE WORK

We have introduced a practical method to make CVT affordable to dis-
tributed control of large swarms of robots that only communicate locally
with their neighbors in mobile search and monitoring problems. It can be
applied effectively to dynamic and deformable regions, where the arbitrary
shape of the region is only required to be convex. We consider a distributed
framework where the position of the region is flooded from the leaders to the
robots. As expected, the number of hops to receive the information limits the
allowable speed of change of the region. Nevertheless, due to the proposed
feedforward-based approach, the system can cope with increasing speed of
the covered region, it is scalable with the number of robots, and robustness
to the loss of robots is provided. In fact, simulation results demonstrate that
without the feedforward term the dynamic coverage task is unfeasible if the
region is much larger or moves much faster, whereas our approach is able to
perform well.

Besides addressing the 3-D case, further avenues of research include the
evaluation of the approach considering practical variations of the proposed
method, such as allowing transformations which are not affine, asynchronous
communications with occasional failures, sensors with noise, or robots with
detailed dynamics. Also, in order to alleviate the effect of flooding delays,
information about the vertices could be used as soon as possible, as opposed
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• n = 96, r = 0.25, h = 15, s = 8, vmax = 0.2, with feedforward.

• n = 96, r = 1, h = 2, s = 8, vmax = 0.2, with feedforward.

• n = 96, r = 0.25, h = 0 (leaders broadcast), s = 8, vmax = 0.2, with
feedforward.
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Figure 9: Case n = 96 with feedforward, with h = 15, 2, 0, in blue, red, and green,
respectively. Top: the maximum displacement of any robot at each step (e), dashed black
for the leaders, and bottom: minimum, mean, and maximum distances between connected
robots (d).
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to each robot waiting to receive the complete information of the region before
using it, as required for the theoretical analysis of the method. From some
preliminary tests of these practical variations, the method appears to be very
robust.
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